4.7 Article

Fabrication of flexible electrically conductive polymer-based micropatterns using plasma discharge

期刊

SENSORS AND ACTUATORS A-PHYSICAL
卷 301, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2019.111727

关键词

Polyaniline; Polyethylene terephthalate; Micropattern; Plasma treatment; Electrical conductivity

资金

  1. Qatar University [QUUG-CAM-CAM-1516-1]

向作者/读者索取更多资源

In this work, laboratory prepared PANI and it's composite with carbon nanotubes (PANI/CNTs) were used for the fabrication of micropatterns on flexible polyethylene terephthalate (PET) substrate using the drop cast method and plasma technology. Plasma technology was employed as an adhesion promoter between the PET substrate and PANI layers, as was confirmed by the peel tests. The PANI and PANI-CNTs deposited layers on PET were thoroughly characterized in terms of the surface, as well as the structural morphology, by various microscopic and scanning probe techniques. Moreover, the electrical conductivity of the deposited layers was confirmed by broadband dielectric spectroscopy (BDS) and conductive atomic force microscopy (ORCA-AFM). The presence of CNTs in the PANI/CNTs composite was responsible for the more uniform and compact deposited layers and better electrical conductivity. The laboratory prepared PANI/CNTs samples excelled in terms of their stable conductivity in the whole frequency range. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据