4.7 Article

Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 721, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.137703

关键词

Cross validation; Cubist; Digital soil mapping; Landsat; Random forest; Soil properties

资金

  1. University of Zanjan

向作者/读者索取更多资源

Modeling and mapping of soil properties are critical in many environmental, climatic, ecological and hydrological applications. Digital soil mapping (DSM) techniques are now commonly applied to predict soil properties with limited data by developing predictive relationships with environmental covariates. Most studies derive covariates from a digital elevation model (named static covariates). Many works also include single-day remotely sensed satellite imagery. However, multitemporal satellite images can capture information about soil properties over time and bring additional information in predicting soil properties in DSM. We refer to covariates derived from multitemporal satellite images as dynamic covariates. The objective of this study was to assess the performance of DSM when using terrain derivatives (static covariates), single-date remotely sensed satellite indices (limited dynamic covariates), multitemporal satellite indices (dynamic covariates), and combinations of terrain derivatives and satellite indices (covariate fusion) as covariates in predicting soil properties and estimating uncertainty. Three soil properties are considered in this study: organic carbon (OC), sand content, and calcium carbonate equivalent (CCE). Inclusion of single and/or multitemporal remotely sensed satellite indices improved the prediction of soil properties over traditionally used terrain indices. Significant improvements were observed in the prediction of soil properties using two models, Cubist and random forest (RF). The increase in the R-2 values for Cubist and RF were 126% and 78% for OC, 110% and 54% for sand, and 87% and 32% for CCE. The RMSE decreased by 34% and 27% for OC, 25% and 12% for sand, and 39% and 19% for CCE, when compared to the terrain indices only model. This also reduced the uncertainty of estimation and mapping. These clearly showed the advantage of using multitemporal satellite data fusion rather than simply using static terrain indices for DSM of soil properties to deliver a great potential in improving soil modeling and mapping for many applications. (C) 2020 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据