4.7 Article

Inhibited effect of biochar application on N2O emissions is amount and time-dependent by regulating denitrification in a wheat-maize rotation system in North China

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 721, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.137636

关键词

Function genes; Nitrification; Denitrification; Single biochar application; Different amount

资金

  1. special fund for agro-scientific research in the public interest [201503106]
  2. National Natural Science Foundation of China [31660957, 31601834]
  3. central public-interest scientific institution basal researcher fund [BSRF201906]

向作者/读者索取更多资源

Biochar application is considered an effective method of reducing nitrous oxide (N2O) emissions in soil. However, the mechanism and temporal effect of different doses of biochar on N2O emissions is still obscure. Here, we conducted a two-year field experiment to test the effects of different input amounts and frequencies of biochar on soil N2O emissions in North China. Biochar was applied in six different treatments in a winter wheat and summer maize rotation system: applications of 0 t/ha biochar (C0), 2.25 t/ha biochar (C1), 4.5 t/ha biochar (C2), 9 t/ha biochar (C3), and 13.5 t/ha biochar (C4) each year, and a single application of 13.5 t/ha biochar (CS) in the first year. The results showed that biochar could inhibit N2O emissions, reaching 20.6% to 60.1% in the wheat season and 18.1% to 39.4% in the maize season. The inhibitory effect of biochar on soil N2O emissions was dependent on amount and time. C3 had the best results in the wheat season, although its inhibitory effect in the maize season was not as good relative to C4 due to the lower biochar application. In addition, CS significantly reduced (27.7%) the cumulative N2O emissions in the first year, although the inhibitory effect disappeared in the second year. Biochar increased the nosZ gene copy numbers and promoted a reduction of N2O in the soil via the denitrification process. In conclusion, the inhibition of N2O emissions during denitrification is an important factor for reducing soil N2O emissions by biochar, and the inhibition of biochar is influenced by the input amount and time. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据