4.7 Article

Effects of mineral substrate on ectomycorrhizal fungal colonization and bacterial community structure

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 721, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.137663

关键词

Ectomycorrhizal fungi; Mesh bags; Trichophaea; Bioweathering; High-throughput sequencing; Bacterial diversity

资金

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA23060102]
  2. National Natural Science Foundation of China [41772360]

向作者/读者索取更多资源

Ectomycorrhizal (ECM) fungi can promote the nutrient uptake of plants from soil minerals by bioweathering. However, effects of different minerals on ECM fungal colonization and bacterial community structures in the soil remains poorly documented. Here, we investigated ECM fungal composition and bacterial communities in different mineral-filled mesh bags buried in forest soil. Control (filled with quartz, which has little nutrients for plants) and mineral (apatite, potash feldspar and serpentine) -filled mesh bags were buried in E-horizon soil for six months. After incubation, the contents of available elements in bags were determined, bacterial population sizes were quantified by quantitative PCR, and bacterial and ECM fungal community structures in mesh bags were assessed using high-throughput sequencing. The results showed that dozens of ECM fungal species colonized in different mesh bags, of which 17, 54 and 47 ECM species were observed in apatite-, potash feldspar- and serpentine-filled bags, respectively. Ectomycorrhizal fungal composition and bacterial community structure are affected significantly by mineral types. Pseudomonas, Sphingomonas, Bacillus and Paenibacillus, known for high weathering potential, were the preponderant bacteria inmineral-filled bags compared to the control. Ectomycorrhizal fungi are able to selectively colonize mesh bags based on mineral types, and may have a certain influence on the formation of bacterial community structure, implying a possible cooperation of ECM fungi and bacteria in soil mineral weathering. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据