4.7 Article

The effects of abamectin on oxidative stress and gene expression in rat liver and brain tissues: Modulation by sesame oil and ascorbic acid

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 701, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.134882

关键词

Abamectin; Oxidative stress; Sesame oil; Ascorbic acid; Liver and brain; Rats

资金

  1. King Saud University, Deanship of Scientific Research, College of Science Research Center

向作者/读者索取更多资源

The present work was designed to assess the modulatory effects of sesame oil (SO) and ascorbic acid (AA) on abamectin (ABM)-induced oxidative stress and altered gene expression of hepatic cytochrome P450 2E1 (CYP-2E1), p38 MAPK, and caspase-3 and cerebral P-glycoprotein (Abcb1a receptor). Male rats were distributed into five groups (6 rats/group), receiving distilled water, ABM 2 mg/kg bwt 1/5 LD50 orally for 5 days, ABM + AA 100 mg/kg bwt orally, ABM + SO 5 ml/kg bwt orally, or ABM + SO + AA at the aforementioned doses. Nineteen compounds were identified in the SO sample by GC-MS analysis, including tetradecane,2,6,10-trimethyl, octadecane, 1-hexadecanol,2-methyl, and octadecane,6-methyl. Abamectin significantly upregulated the hepatic CYP-2E1 expression with excess generation of oxidative radicals, as evident by the significant depletion of reduced glutathione and elevation of malondialdehyde concentration (p <= 0.05) in rat liver and brain tissues. Further, ABM significantly increased TNF-alpha concentration, the expression of caspase-3 and p38 MAPK in the liver, as well as p-glycoprotein and GABA-A receptor in the brain. These results were in line with the observed histopathological changes. Sesame oil and/or AA supplementation alleviated ABM-induced cell damage by modulating all tested parameters. In conclusion, ABM induces oxidative stress and increases the expression of CYP-2E1, caspase-3, and p38 MAPK in the liver, as well as P-gp and GABA-A receptor in the brain. These effects could be ameliorated by SO and AA, alone and in combination, probably due to their anti-oxidant, anti-apoptotic, and gene-regulating activities. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据