4.7 Article

Removal of metals from wastewaters by mineral and biomass-based sorbents applied in continuous-flow continuous stirred tank reactors followed by sedimentation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 700, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.135079

关键词

Low-cost sorbents; Byproduct; Pilot tests; Biosorbents; Industrial wastewater

资金

  1. European Regional Development Fund as part of the HuJa project. Enhancing the treatment of metal-containing storm-waters and wastewaters using natural materials [A70942]

向作者/读者索取更多资源

Numerous studies have examined the performance of mineral and biomass-based sorbents for metal removal under laboratory conditions, but few pilot-scale tests have been performed on possible water purification systems in which these sorbents can be used. This study addressed this issue by evaluating the suitability of selected sorbents for use in continuous-flow continuous stirred tank reactors (CSTR) followed by sedimentation in laboratory and in situ pilot-scale experiments. Acid (HCl)-modified peat (MPeat), a commercially available mineral sorbent containing mainly magnesium (Mg) carbonates, Mg oxides and Mg silicates (Mineral-P) and a calcium-rich ground granular blast furnace slag (by-product of stainless steel production (Slag) were tested for treatment of metallurgical industry wastewater (laboratory, pilot). Overall, higher metal removal was achieved from samples with higher initial metal concentrations. M-Peat achieved good removal of Zn (50-70%) and Ni (30-50%) in laboratory and pilot experiments. However, the poor settling characteristics of M-Peat can restrict its application in systems where sedimentation is the solid-liquid separation process applied. Mineral-P showed good performance in removing 65-85% of Zn present in the water and it performed similarly in laboratory and pilot tests. However, low concentrations of As and Ni leached from Mineral-P in all tests. Slag achieved good performance in treatment of the industrial wastewater, removing 65-80% of Zn and 60-80% of Pb during pilot tests. However, low concentrations of Cr and Cu were leached from Slag in a few tests. As a by-product of the same (metallurgical) industry, ground granular blast furnace slag is an excellent candidate for reducing Zn concentrations from industrial wastewater flows. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据