4.7 Article

Near real-time notification of water quality impairments in recreational freshwaters using rapid online detection of β-D-glucuronidase activity as a surrogate for Escherichia coli monitoring

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 720, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.137303

关键词

beta-D-glucuronidase; Enzymatic assays; Early-warning systems; Decision making; Beach action value; Public health

资金

  1. Canada Research Chair in SourceWater Protection
  2. NSERC Industrial Chair on DrinkingWater
  3. NSERC Collaborative Research and Development Grant Project [CRDPJ-505651-16]
  4. National Institute of Water and Atmospheric Research (NIWA) [SSIF FWWQ1818/1908]

向作者/读者索取更多资源

Waterborne disease outbreaks associated with recreational waters continue to be reported around the world despite existing microbiological water quality monitoring frameworks. Most regulations resort to the use of culture-based enumeration of faecal indicator bacteria such as Escherichia coli to protect bathers from gastrointestinal illness risks. However, the long sample-to-result time of standard culture-based assays (minimum 18-24 h) and infrequent regulatory sampling (weekly or less) do not enable detection of episodic water quality impairments and associated public health risks. The objective of this study was to assess the suitability of an autonomous online technology measuring beta-D-glucuronidase (GLUC) activity for near real-time monitoring of microbiological water quality in recreational waters and for the resulting beach management decisions. GLUC activity and E. coli concentrations were monitored at three freshwater sites in Quebec, Canada (sites Qc1-3) and one site in NewZealand (site NZ) between 2016 and 2018. We found site-dependent linear relationships between GLUC activity and E. coli concentrations and using confusion matrices, we developed site-specific GLUC activity beach action values (BAVs) matching the regulatory E. coli BAVs. Using the regulatory E. coli BAV as the gold standard, rates of false alarms (unnecessary beach advisories using GLUC activity BAV) and failures to act (failure to trigger advisories using GLUC activity) ranged between 0 and 32% and between 3 and 10%, respectively, which is comparable to the rates reported in other studies using qPCR-defined BAVs. However, a major benefit of the autonomous enzymatic technology is the real-time reporting of threshold exceedances, while temporal trends in GLUC activity can assist in understanding the underlying dynamics of faecal pollution and potential health risks. Our study is the first to describe the applicability of online near real-time monitoring of microbiological water quality as a tool for improved beach management and public health protection. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据