4.7 Article

Developing a temporally accurate air temperature dataset for Mainland China

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 706, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.136037

关键词

Air temperature; Land surface temperature; Remote sensing; Machine learning; MODIS; China

资金

  1. National Natural Science Foundation of China [41975044, 41771360, 41601044, 41801021]
  2. Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences, Wuhan [CUGL170401, CUGCJ1704]

向作者/读者索取更多资源

Spatially continuous satellite data have been widely used to estimate monthly air temperature (Ta). However, it is still not clear whether the estimated monthly Ta is temporally consistent with observed Ta or not. In this study, the accuracies of interannual variations and temporal trends in estimated monthly Ta were systematically analyzed for Mainland China during 2001-2018. The differences in accuracy among five ways to input data into the model were investigated. The Cubist algorithm and ten variables were used to estimate monthly Ta. It was found that inputting data for the same month into the model can generate more accurate results than inputting all data into the model. Using temporal variables (i.e., month and year) can significantly increase the accuracy of estimated Ta. These results can be explained by different relationships between Ta and auxiliary variables that appear at different times. Thus, using temporal variables can help distinguish between different relationships and improve accuracy levels of the estimated Ta. When applying the best method (inputting data for the same month into the model and using the year as a temporal variable), the coefficient of determination (R-2) of estimated monthly mean Ta, interannual variations in monthly mean Ta and temporal trends in monthly mean Ta were recorded as 0.997, 0.731 and 0.848, respectively. The root mean squared errors (RMSEs) of estimated monthly mean Ta, interannual variations in monthly mean Ta and temporal trends in monthly mean Ta were recorded as 0.629 degrees C, 0.593 degrees C and 0.201 degrees C/decade, respectively. An accurate, national coverage, 1 km spatial resolution and long time series (2001-2018) monthly mean, maximum and minimum Ta dataset was finally developed. The dataset can be of great use to many fields such as climatology, hydrology and ecology. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据