4.7 Article

Configuration and rapid start-up of a novel combined microbial electrolytic process treating fecal sewage

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 705, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.135986

关键词

Coupled ABR-MFC-MEC; Fecal sewage treatment; Rapid start-up; External voltage; Biological analysis

资金

  1. National Key Research and Development Program of China [2018YFD1100502-01]
  2. Bill AMP
  3. Melinda Gates Foundation, Seattle, WA (RTTC-China 2014)
  4. Suzhou Water Conservancy Science and Technology Project [2018004]

向作者/读者索取更多资源

Most of the developing countries arc in need of sanitary toilets due to insufficient supporting facilities and proven technology mainly on disposal of fecal sewage. A microbial fuel cell (MFC)-microbial electrolytic cell (MEC) coupling with an anaerobic baffle reactor (ABR) was used to realize simultaneous removal of nitrogen and carbon in fecal sewage and complete energy recycling. Configuration and rapid start-up of the ABR-MFC-MEC process treating fecal sewage was systematically studied. Results showed that the application of an external voltage of 0.5 V can shorten the start-up time and improve hydrogen production rate to 3.42 x 10(-3) m(3)-H-2/m(3)/d in the MEC unit, where the double-chamber MFC can drive MEC completing the synchronous coupling start-up. In the single and double chamber systems, bio-electrochemical processes both enhanced shock resistance capacity of the whole ABR-MFC-MEC process during coupled operation, with chemical oxygen demand (COD) removal rates of 99.2% and 98.9% for the single and double chamber systems respectively. Based on results of biological analysis, the coupled system has a distinct selective effect on microbial population and each unit has high microbial diversity to enhance the stability and resistance of the whole system for treatment of feces and urine. (C) 2019 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据