4.7 Article

Quantifying the response of potential flooding risk to urban growth in Beijing

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 705, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.135868

关键词

Landsat data; Impervious surface; Surface runoff; Potential flooding risk; Beijing; Land surface hydrological modeling

资金

  1. National Key Research and Development Program of China [2016YFA0600103, 2016YFC0401404]
  2. National Natural Science Foundation of China [41971030]

向作者/读者索取更多资源

Global urban growth leads to a great increase in the impervious surface area (ISA) such as roads, plazas, airports, and parking lots, and consequently reshapes hydrological regimes in urban basins. Beijing, the capital of China, has experienced rapid urban growth since the 1980s. However, the spatial-temporal variability of the ISA and its impact on flooding risk are unclear. This study monitored urban growth (i.e., the evolution of the ISA) in Beijing for the period of 1980-2015 based on Landsat data, and identified the response of surface runoff yield using a land-surface hydrological model. The modeling at a relatively high spatial resolution (similar to 6 km) was driven with retrieved long-term ISA dynamics, Global LAnd Surface Satellite (GLASS) product, and climate forcings. The results show that the impervious surface fraction (ISF) in Beijing increased from 8.73% (1448.16 km(2)) in 1980 to 22.22% (3685.92 km(2)) in 2015. With a demarcation at around the year 2000. the ISA growth presents a new pattern with a northeast-southwest direction from the Core Functional Zone (Core-Zone). Due to the ISA expansion, the simulated runoff coefficient in 2010 is approximately doubled compared to that of 1980. We identified an ISF threshold of approximately 6%, beyond which every 1% increase in the ISF may increase the surface runoff by approximately 5.51 mm/year, and thereby poses a high potential flooding risk even under a moderate rainfall event. In four typical historical storms, the sensitivity coefficients of surface runoff to precipitation and ISF were 0.97 and 0.63, respectively, indicating impervious surfaces dramatically enhanced the potential flooding risk Our findings have implications for urban planning and the construction of sponge city in Beijing. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据