4.7 Article

A novel hybrid concept for implementation in drinking water treatment targets micropollutant removal by combining membrane filtration with biodegradation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 694, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.133710

关键词

Microbial biotechnology; Biodegradation; Membrane filtration; Drinking water treatment; Pesticide removal; 2,6-Dichlorobenzamide (BAM)

资金

  1. MEM2BIO - Innovative combination of MEMbrane Technology and BIOlogical Filtration for water purification (Innovation Fund Denmark) [5157-00004B]
  2. Aarhus University Research Foundation starting grant [AUFF-E-20177-21]

向作者/读者索取更多资源

Groundwater extracted for drinking water production is commonly treated by aeration and sand filtration. However, this simple treatment is typically unable to remove pesticide residues. As a solution, bioaugmentation of sand filter units (i.e., the addition of specific degrader strains) has been proposed as an alternative green technology for targeted pesticide removal. However, the introduced degraders are challenged by (i) micropollutant levels of target residue, (ii) the oligotrophic environment and (iii) competition and predation by the native microorganisms, leading to loss of population and degradation potential. To overcome these challenges, we propose the introduction of a novel hybrid treatment step to the overall treatment process in which reverse osmosis filtration and biodegradation are combined to remove a target micropollutant. Here, the reverse osmosis produces a concentrated retentate that will act as a feed to a dedicated biofilter unit, intended to promote biodegradation potential and stability of an introduced degrader. Subsequently, the purified retentate will be re-mixed with the permeate from reverse osmosis, for re-mineralization and downstream consumption. In our study, we investigated the effect of reverse osmosis retentates on the degradation potential of an introduced degrader. This paper provides the first promising results of this hybrid concept using the 2,6-dichlorobenzamide (BAM)-degrading bacteria Aminobacter sp. MSH1 in batch experiments, spiked with radiolabeled BAM. The results showed an increased degradation potential of MSH1 in retentate waters versus untreated water. Colony-forming units and qPCR showed a stable MSH1 population, despite higher concentrations of salts and metals, and increased growth of native bacteria. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据