4.7 Article

Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 702, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.134723

关键词

Microplastics; Classification; Visible-near-infrared spectroscopy; Convolutional neural network; Transfer learning; Soil pollution

资金

  1. ARC [LP150100566]
  2. Australian Research Council [LP150100566] Funding Source: Australian Research Council

向作者/读者索取更多资源

Microplastics are emerging pollutants that exist in our environment. Microplastics are synthetic polymers that have particles size smaller than 5 mm. Rapid screening of microplastics contamination in the soil could assist in identifying anomalous concentrations of microplastics in the terrestrial environment. Because there is no rule on the maximum concentration limit on how much microplastics can exist within the soil, the concentration of microplastics collected from industrial areas around metropolitan Sydney was used as a baseline. Spectra obtained from the visible-near-infrared (vis-NIR) spectra has been shown to be feasible in predicting microplastics in the soil. Instead of creating a regression model predicting the concentration of microplastic, a classification model for screening was proposed. A convolutional neural network (CNN) model was trained to classify the soil sample into various degrees of contamination based on concentration. We also delved into the CNN model to understand how the CNN model classifies the spectral data input. The model performance was first tested on two levels of classification (contaminated vs. non-contaminated). The model was able to classify the uncontaminated samples into the appropriate class more accurately than the contaminated samples. When the number of classes were gradually increased, the classification accuracy for the higher level of contaminated samples improved. Transfer learning CNN model further improved the classification prediction only on the extremes, but not the intermediate classes. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据