4.7 Article

Assessing the relationship between anthropogenic heat release warming and building characteristics in Guangzhou: A sustainable development perspective

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 695, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.133759

关键词

Anthropogcnic heat release; Warming effect; Building charactelistics; Multiple linear relationship; WRF model

资金

  1. National Natural Science Foundation of China [41671430]

向作者/读者索取更多资源

We assessed the spatial heterogeneity of warming due to total anthropogenic heat release (AHR) and building anthropogenic heat release under different heat release scenarios and its relationship with building properties in the highly urbanized portion of Guangzhou using the Weather Research and Forecasting (WRF) model. The simulation results show that different AHR scenarios result in different temperature rise outcomes. A rise of 040 degrees C and 023 degrees C results from a normal total AHR scenario and normal building AHR scenario, while a rise of 0.71 degrees C and 041 degrees C arises when total AHR and building AHR is doubled. This indicates that more anthropogenic heat results in a more serious warming effect. Moreover, the spatial heterogeneity of the AHR-caused temperature rise is affected by the building area. The AHR-derived warming effect is most serious in high-height-medium-density (H-M) and high-height-high-density (H-H) building areas, where temperature rose by 0.36 degrees C and 0.34 degrees C due to building AHR under two AHR scenarios, while it was least serious in low-height-high-density (L-H) and high-height-low-density (H-L) areas, where temperature rose by 16 degrees C and 025 degrees C under two building AHR scenarios. When AHR is doubled, the hot spot of AHR-derived warming tends to become more concentrated. The quantitative relationship between building AHR-derived warming and building property data was assessed using a multiple linear regression model. The model shows that the combination of building height and building density provides better predictor of building AHR warming than either property alone; and the relationship is best predicted in L-H and H-L areas, with R-2 values of 0.63 and 0.79, respectively. Warming clue to AHR should be considered as one of the most serious urban warming forces and the land surface properties are the key factors that influence AHR-derived warming. This study provides evidence for the significance of AHR in the urban environment and offers suggestions for mitigating urban thermal heating. (C) 2019 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据