4.7 Article

Expression patterns and functional divergence of homologous genes accompanied by polyploidization in cotton (Gossypium hirsutum L.)

期刊

SCIENCE CHINA-LIFE SCIENCES
卷 63, 期 10, 页码 1565-1579

出版社

SCIENCE PRESS
DOI: 10.1007/s11427-019-1618-7

关键词

Gossypium; fiber development; polyploid evolution; expression level dominance; sub; and neofunctionalization

类别

资金

  1. National Key Research and Development Program of China [2016YFD0100203, 2016YFD0100306]
  2. Foundation and Frontier Research Grant of Henan Provincial Science and Technology Bureau [162300410171]

向作者/读者索取更多资源

Naturally allotetraploid cotton has been widely used as an ideal model to investigate gene expression remodeling as a consequence of polyploidization. However, the global gene pattern variation during early fiber development was unknown. In this study, through RNA-seq technology, we comprehensively investigated the expression patterns of homologous genes between allotetraploid cotton (G. hirsutum) and its diploid progenitors (G. arboreum and G. raimondii) at the fiber early development stage. In tetraploid cotton, genes showed expression level dominance (ELD) bias toward the A genome. This phenomenon was explained by the up-/downregulation of the homologs from the nondominant progenitor (D genome). Gene ontology (GO) enrichment results indicated that the ELD-A genes might be a prominent cause responsible for fiber property change through regulating the fatty acid biosynthesis/metabolism and microtubule procession, and the ELD-D genes might be involved in transcription regulation and stress inducement. In addition, the number and proportion of completely A- and D-subfunctionalized gene were similar at different fiber development stages. However, for neofunctionalization, the number and proportion of reactivated D-derived genes were greater than those of A at 3 and 5 DPA. Eventually, we found that some homologous genes belonging to several specific pathways might create novel asymmetric transcripts between two subgenomes during polyploidization and domestication process, further making the fiber property meet the human demands. Our study identified determinate pathways and their involved genes between allotetraploid cotton and their progenitors at early fiber development stages, providing new insights into the mechanism of cotton fiber evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据