4.5 Article

A modified piezoelectric ultrasonic composite oscillator technique for simultaneous measurement of elastic moduli and internal frictions at varied temperature

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 91, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5135360

关键词

-

资金

  1. National Natural Science Foundation of China [11672003, 11890684]

向作者/读者索取更多资源

In this work, a modified piezoelectric ultrasonic composite oscillator technique (M-PUCOT) is developed for measuring a material's elastic moduli and internal frictions, as a function of temperature. Different from the traditional PUCOT that employs two quartz bars as the drive and gauge, here, a single small piezoelectric transducer (PZT) ring is used to drive and sense longitudinal or torsional vibration in a cylinder specimen. Because of the strong piezoelectric effect and relatively large bandwidth of the PZTs compared to their quartz counterpart, the frequency match condition between the transducer and the specimen is not required in this M-PUCOT. For high temperature measurement, a fused quartz spacer, whose resonance frequency matches the specimen's, is bonded between the transducer and the specimen to provide thermal insulation. First, the united equivalent circuit of the transducer- (spacer) -specimen composite system was derived. Then, Young's modulus, longitudinal friction, shear modulus, and torsional friction were explicitly obtained by measuring the resonance frequency and antiresonance frequency of the 2- or 3-component system's electrical susceptance curve using an impedance analyzer. The accuracy of this method was validated both by measuring the system's amplitude-frequency curves using a laser vibrometer and through finite element simulations. The repeatability error of the M-PUCOT is only similar to 0.2% for moduli measurement and similar to 2.5% for internal friction measurement, which is very promising for studying the moduli and internal friction variations during damage, fatigue, and phase transitions. Finally, the M-PUCOT was employed to measure the variations in moduli and internal frictions of an Fe64Ni36 Invar alloy from room temperature to 500 degrees C. Results show that above the ferromagnetic phase transition temperature Tc, both moduli reach their maxima, and both internal frictions reach their minima. The proposed M-PUCOT is expected to be widely used in the near future for its quick measurement, high repeatability, and low cost. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据