4.5 Article

Hsa_circ_CSPP1/MiR-361-5p/ITGB1 Regulates Proliferation and Migration of Cervical Cancer (CC) by Modulating the PI3K-Akt Signaling Pathway

期刊

REPRODUCTIVE SCIENCES
卷 27, 期 1, 页码 132-144

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s43032-019-00008-5

关键词

Cervical cancer; Hsa_circ_CSPP1; MiR-361-5p; ITGB1; PI3K-Akt

向作者/读者索取更多资源

This study aimed to investigate the regulatory mechanism of circular RNA CSPP1 (hsa_circ_CSPP1) in cervical cancer. Based on GEO database, differentially expressed circRNAs and mRNAs related to cervical cancer were screened out by R software. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) term analysis were performed to analyze the functional and pathway enrichment of identified DEGs. In addition, Cytoscape software was used to build interaction network of DEGs. The mRNA expressions were examined by qRT-PCR. Western blot was conducted to view the expression of proteins. Cell proliferation and apoptosis were respectively evaluated using CCK-8 assay and flow cytometry, whereas cell migration abilities were detected by Transwell assay. The relationship among factors was validated by dual-luciferase reporter gene assay. The influence in cervical tumor growth was further verified through nude mouse model in vivo. Hsa_circ_CSPP1 and ITGB1 were high-expressed in cervical cancer, while miR-361-5p was low-expressed. Hsa_circ_CSPP1 knockdown or miR-361-5p overexpression could suppress cervical cancer cell proliferation and migration, whereas promoted cell apoptosis. In addition, further experiments demonstrated that both hsa_circ_CSPP1 and ITGB1 mRNA were targets of miR-361-5p. Repressing hsa_circ_CSPP1 restrained cell viability and mobility and induced apoptosis through sponging miR-361-5p. Meanwhile, miR-361-5p also inhibited cervical cancer tumorigenesis via downregulation of ITGB1. Knockdown of hsa_circ_CSPP1 impeded tumor growth through suppressing the expression of downstream gene ITGB1, PI3K, and Akt. Circular RNA hsa_circ_CSPP1 regulates cell migration and proliferation in cervical cancer through miR-361-5p/ITGB1 in PI3K-Akt signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据