4.7 Article

Surface modification of sulfonated polyethersulfone membrane with polyaniline nanoparticles for application in direct methanol fuel cell

期刊

RENEWABLE ENERGY
卷 146, 期 -, 页码 1262-1277

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2019.06.175

关键词

Direct methanol fuel cell; Polyion complex membrane; Surface modification; Membrane characterization; Molecular dynamics

向作者/读者索取更多资源

A novel polyion nanocomposite membrane was synthesized by doping the surface and matrix of sulfonated polyethersulfone (SPES) with polyaniline (PANi) nanoparticles to facilitate proton conduction in direct methanol fuel cell (DMFC) application. The synthesized membrane exhibited effective, ionic interaction, dense morphology with high thermal stability, adequate tensile strength (60 Mpa) and considerable ion exchange capacity (2.2 meq g(-1)). The membrane exhibited low methanol permeability of 7.46 x 10(-8) cm(2) s(-1) with high proton conductivity (0.098 Scm(-1)) besides adequate hydrolytic and oxidative stabilities. A maximum power density of 99 mWcm(-2) at a current density of 250 mAcm(-2) was obtained with a single slice fuel cell setup. Molecular dynamics simulation based on the COMPASS force-field was applied to investigate the influence of PANi nanoparticles, temperature and hydration level on the diffusivity of hydronium ions. Rapid mass transfer of hydronium ions within the PANi incorporated SPES membrane, could be achieved at higher temperatures and hydration levels. Analysis by radial distribution function (RDF) revealed extensive interactions of sulfonic acid groups of SPES and amine groups of PANi with water molecules. The polyion complex membrane was found to exhibit significant prospect of scale-up for potential application in DMFC. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据