4.7 Article

Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application

期刊

RENEWABLE ENERGY
卷 145, 期 -, 页码 1677-1692

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2019.07.076

关键词

Solar collector; Plus-shaped; Perforated baffle; Performance; Drying; Celery root

向作者/读者索取更多资源

Solar thermal systems like solar water and solar air collectors (SCs) are generally used because of their simple structure and high thermal efficiency. Solar air collectors could be utilized in drying applications because they are easy applicable and economical. In this study, a novel parallel-pass SC with double baffles (PPSCDB), parallel-pass SC with baffles (PPSCB) and parallel-pass SC (PPSC) without baffle have been designed and tested for drying application. Baffles have been manufactured in plus-shaped and perforated to achieve high thermal performance. The performance of solar collectors has been analyzed numerically and experimentally. In addition, a drying chamber has been coupled with solar air collectors. Celery (Apium Graveolens L.) root has been dried as a product and dried samples' quality has been analyzed experimentally. The experiments have been conducted at 0.009 kg/s and 0.011 kg/s air mass flow rates. According to the experimental findings, average thermal efficiencies of PPSC, PPSCB and PPSCDB are in the range of 62.10-66.32%, 65.72-69.62% and 71.12-75.11%, respectively. The highest instantaneous efficiency was obtained as 84.30% in higher mass flow rate in PPSCDB. Also, maximum deviation between experimental and numerical results was 9.5%. (c) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据