4.7 Article

Simulation of silicon heterostructure solar cell featuring dopant-free carrier-selective molybdenum oxide and titanium oxide contacts

期刊

RENEWABLE ENERGY
卷 143, 期 -, 页码 359-367

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2019.05.007

关键词

Carrier-selective contacts; Dopant-free; Molybdenum oxide; Silicon; Solar cell; Titanium oxide

资金

  1. Higher Education Commission, Pakistan [213-63936-2EG2-123]
  2. Scientific and Technological Research Council of Turkey (TUBITAK) [217M203, 217M087]

向作者/读者索取更多资源

Dopant-free carrier-selective transition metal oxide (TMO) contacts offer unique electrical properties pertaining to the rectification of doping-related issues in silicon (cSi) solar cell. In this paper, cSi heterojunction solar cell featuring TMOs of molybdenum oxide (MoOx) and titanium oxide (TiOx) as hole- and electron-selective contacts, respectively, has been realized using Silvaco TCAD. The photovoltaic performance has been evaluated based on the electron affinity of TiOx, its thickness, interfacial charge density, band gap, and operating temperature. MoOx with an appropriate work function prompts band bending leading to Fermi level pinning at top interface. Insertion of TiOx with low electron affinity reduces the rear energy barrier against electrons from 0.86 eV to 0.15 eV. Minimum recombination has been observed for electron affinity values range of 3.6-4.2 eV. The rear interface defects (D-it) should be minimized to reduce the recombination and to facilitate transportation of electrons. The device numerically demonstrated V-oc of 723 mV, J(sc) 39.2 mA/cm(2), FF 79.8%, and eta of 22.64% with temperature coefficient of -0.08%/degrees C. These results validate the applicability of heterojunction design with fully-covered carrier-selective contacts that can be useful for industrial applications as it eliminates the need of doped layers with the associated capital-intensive and complicated fabrication processes. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据