4.7 Article

Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning

期刊

RADIOTHERAPY AND ONCOLOGY
卷 144, 期 -, 页码 152-158

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.radonc.2019.10.019

关键词

Machine learning; Radiotherapy

向作者/读者索取更多资源

Background: Deep learning-based auto-segmented contours (DC) aim to alleviate labour intensive contouring of organs at risk (OAR) and clinical target volumes (CTV). Most previous DC validation studies have a limited number of expert observers for comparison and/or use a validation dataset related to the training dataset. We determine if DC models are comparable to Radiation Oncologist (RO) interobserver variability on an independent dataset. Methods: Expert contours (EC) were created by multiple ROs for central nervous system (CNS), head and neck (H&N), and prostate radiotherapy (RT) OARs and CTVs. DCs were generated using deep learning-based auto-segmentation software trained by a single RO on publicly available data. Contours were compared using Dice Similarity Coefficient (DSC) and 95% Hausdorff distance (HD). Results: Sixty planning CT scans had 2-4 ECs, for a total of 60 CNS, 53 H&N, and 50 prostate RT contour sets. The mean DC and EC contouring times were 0.4 vs 7.7 min for CNS, 0.6 vs 26.6 min for H&N, and 0.4 vs 21.3 min for prostate RT contours. There were minimal differences in DSC and 95% HD involving DCs for OAR comparisons, but more noticeable differences for CTV comparisons. Conclusions: The accuracy of DCs trained by a single RO is comparable to expert inter-observer variability for the RT planning contours in this study. Use of deep learning-based auto-segmentation in clinical practice will likely lead to significant benefits to RT planning workflow and resources. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据