4.7 Article

A risk-based approach to determination of optimal inspection intervals for buried oil pipelines

期刊

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION
卷 134, 期 -, 页码 95-107

出版社

ELSEVIER
DOI: 10.1016/j.psep.2019.11.031

关键词

Pipeline; Corrosion; Inspection planning; Risk-based methodology

资金

  1. Nazarbayev University

向作者/读者索取更多资源

Corrosion is a significant concern causing tremendous losses to all pipeline operators. To combat this operational issue, new methods and tools are needed to analyze and model degradation, to predict failure, and finally to develop strategies for prevention, control, and mitigation of corrosion in pipelines. A practical inspection and maintenance program is crucial to prevent pipeline failures due to corrosion. Risk-based inspection (RBI) is an increasingly popular and trusted method to assess and develop inspection plans. However, the determination of optimal inspection intervals is still challenging in RBI. The present study aims to develop a dynamic Bayesian network (DBN)-based approach for optimization of inspection intervals. Based on inline inspection data and analytical corrosion propagation models, DBN is applied for the estimation of both the internal and external corrosion damage as well as the probability of failure (PoF). The cost of failure (CoF) is estimated based on typical cost categories relevant to pipeline accidents. Risk is calculated as the product of PoF and CoF. A utility function to combine both the risk and the annual cost of the inspection program is also developed. The optimal interval can be found based on the curve of the utility function. The proposed approach is demonstrated through a real-world case study on an operating pipeline. (C) 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据