4.7 Article

Destabilizing evolutionary and eco-evolutionary feedbacks drive empirical eco-evolutionary cycles

出版社

ROYAL SOC
DOI: 10.1098/rspb.2019.2298

关键词

stability; predator-prey; population dynamics; Red Queen dynamics

资金

  1. U.S. National Science Foundation [DMS-1313418, DMS-1716803]

向作者/读者索取更多资源

We develop a method to identify how ecological, evolutionary, and eco-evolutionary feedbacks influence system stability. We apply our method to nine empirically parametrized eco-evolutionary models of exploiter-victim systems from the literature and identify which particular feedbacks cause some systems to converge to a steady state or to exhibit sustained oscillations. We find that ecological feedbacks involving the interactions between all species and evolutionary and eco-evolutionary feedbacks involving only the interactions between exploiter species (predators or pathogens) are typically stabilizing. In contrast, evolutionary and eco-evolutionary feedbacks involving the interactions between victim species (prey or hosts) are destabilizing more often than not. We also find that while eco-evolutionary feedbacks rarely altered system stability from what would be predicted fromjust ecological and evolutionary feedbacks, eco-evolutionary feedbacks have the potential to alter system stability at faster or slower speeds of evolution. As the number of empirical studies demonstrating eco-evolutionary feedbacks increases, we can continue to apply these methods to determine whether the patterns we observe are common in other empirical communities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据