4.8 Article

Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1911951117

关键词

extracellular matrix; cancer metastasis; epithelial-mesenchymal transition; breast cancer; circulating tumor cell

资金

  1. Biospecimen Procurement and Translational Pathology Shared Resource Facility at the Markey Cancer Center [P30CA177558]
  2. National Cancer Institute [1R01 CA207772, 1R01 CA215095, 1R21 CA209045]

向作者/读者索取更多资源

Increased expression of extracellular matrix (ECM) proteins in circulating tumor cells (CTCs) suggests potential function of cancer cell-produced ECM in initiation of cancer cell colonization. Here, we showed that collagen and heat shock protein 47 (Hsp47), a chaperone facilitating collagen secretion and deposition, were highly expressed during the epithelial-mesenchymal transition (EMT) and in CTCs. Hsp47 expression induced mesenchymal phenotypes in mammary epithelial cells (MECs), enhanced platelet recruitment, and promoted lung retention and colonization of cancer cells. Platelet depletion in vivo abolished Hsp47-induced cancer cell retention in the lung, suggesting that Hsp47 promotes cancer cell colonization by enhancing cancer cell-platelet interaction. Using rescue experiments and functional blocking antibodies, we identified type I collagen as the key mediator of Hsp47-induced cancer cell-platelet interaction. We also found that Hsp47-dependent collagen deposition and platelet recruitment facilitated cancer cell clustering and extravasation in vitro. By analyzing DNA/RNA sequencing data generated from human breast cancer tissues, we showed that gene amplification and increased expression of Hsp47 were associated with cancer metastasis. These results suggest that targeting the Hsp47/collagen axis is a promising strategy to block cancer cell-platelet interaction and cancer colonization in secondary organs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据