4.8 Article

Actin protrusions push at apical junctions to maintain E-cadherin adhesion

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1908654117

关键词

E-cadherin; actin; epithelial; junction; adhesion

资金

  1. National Institutes of Health [R01-GM106106, R01-DK098398]

向作者/读者索取更多资源

Cadherin-mediated cell-cell adhesion is actin-dependent, precise role of actin in maintaining cell-cell adhesion is not fully understood. Actin polymerization-dependent protrusive activity is required to push distally separated cells close enough to initiate contact. Whether protrusive activity is required to maintain adhesion in confluent sheets of epithelial cells is not known. By electron microscopy as well as live cell imaging, we have identified a population of protruding actin microspikes that operate continuously near apical junctions of polarized Madin-Darby canine kidney (MDCK) cells. Live imaging shows that microspikes containing E-cadherin extend into gaps between E-cadherin clusters on neighboring cells, while reformation of cadherin clusters across the cell-cell boundary correlates with microspike withdrawal. We identify Arp2/3, EVL, and CRMP-1 as 3 actin assembly factors necessary for microspike formation. Depleting these factors from cells using RNA interference (RNAi) results in myosin II-dependent unzipping of cadherin adhesive bonds. Therefore, actin polymerization-dependent protrusive activity operates continuously at cadherin cell-cell junctions to keep them shut and to prevent myosin II-dependent contractility from tearing cadherin adhesive contacts apart.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据