4.8 Article

Nanoscale spectroscopic origins of photoinduced tip-sample force in the midinfrared

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1913729116

关键词

optically induced force; induced (image) dipole; tip-enhanced thermal expansion; nanoscale spectroscopic imaging; photoinduced force microscopy

资金

  1. Korea Research Fellowship Program through the National Research Foundation of Korea - Ministry of Science and Information and Communication Technology [2016H1D3A1938071]
  2. National Science Foundation [CHE-1414466]
  3. National Research Foundation of Korea [2016H1D3A1938071] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

When light illuminates the junction formed between a sharp metal tip and a sample, different mechanisms can contribute to the measured photoinduced force simultaneously. Of particular interest are the instantaneous force between the induced dipoles in the tip and in the sample, and the force related to thermal heating of the junction. A key difference between these 2 force mechanisms is their spectral behavior. The magnitude of the thermal response follows a dissipative (absorptive) Lorentzian line shape, which measures the heat exchange between light and matter, while the induced dipole response exhibits a dispersive spectrum and relates to the real part of the material polarizability. Because the 2 interactions are sometimes comparable in magnitude, the origin of the chemical selectivity in nanoscale spectroscopic imaging through force detection is often unclear. Here, we demonstrate theoretically and experimentally how the light illumination gives rise to the 2 kinds of photoinduced forces at the tip-sample junction in the midinfrared. We comprehensively address the origin of the spectroscopic forces by discussing cases where the 2 spectrally dependent forces are entwined. The analysis presented here provides a clear and quantitative interpretation of nanoscale chemical measurements of heterogeneous materials and sheds light on the nature of light-matter coupling in optomechanical force-based spectronanoscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据