4.5 Article

Additive manufacturing and characterization of a load cell with embedded strain gauges

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.precisioneng.2019.11.019

关键词

-

资金

  1. Italian Ministry of Education, University and Research under the Programme Department of Excellence [CUP - D94I18000260001]

向作者/读者索取更多资源

In this paper we present the exploitation of Fused Filament Fabrication (FFF) to manufacture a load cell using double extrusion of conductive and non-conductive commercial materials in a single-step printing cycle. A load cell with four embedded strain gauges, manufactured with tailored process parameters and strategies, was used to deposit the conductive filament to obtain near equal electrical resistance values among the four strain gauges, aiming to connect them in a full Wheatstone bridge configuration. Subsequently, several tests were performed, firstly to understand the behavior of each strain gauge and then to characterize the load cell. The tests showed that the strain gauges are sensible to compressive and tensile deformation and that the load cell's voltage, obtained by connecting the four strain gauges in a full Wheatstone bridge, decreases as the force applied increases. This work demonstrates the potential of FFF technology in the sensor manufacturing field and that it is possible to integrate sensitive elements into non-sensitive elements without an additional assembly process by using low-cost commercial filaments and 3D printers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据