4.5 Article

Magnetic soft silicone elastomers with tunable mechanical properties for magnetically actuated devices

期刊

POLYMERS FOR ADVANCED TECHNOLOGIES
卷 31, 期 6, 页码 1414-1425

出版社

WILEY
DOI: 10.1002/pat.4871

关键词

iron oxide; mechanical properties; polydimethylsiloxane; surface treatment

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Fonds de recherche du Quebec - Nature et technologies

向作者/读者索取更多资源

Polydimethylsiloxane (PDMS)/iron oxide magnetic nanoparticle (NP) composites with tailored mechanical properties are prepared for use in magnetically actuated soft devices based on their controlled deformation by the application of an external magnetic field. This investigation reports the synthesis and functionalization of iron oxide NPs, the preparation of the PDMS/NP composites, the evaluation of NP dispersion using scanning electron microscopy (SEM) and optical microscopy, and the mechanical characterization of the composite films. Characterization includes rheological measurements as well as stress-strain curves to obtain the Young modulus and elongation at break. SEM is used to probe individual NP dispersion, whereas optical microscopy provides rapid access to quantitative information about the size and distribution of particle aggregates. Results for nonfunctionalized (nf), oleic acid (OA)-coated, and stearic acid (SA)-coated iron oxide NPs and their blends are presented. PDMS elastomers containing both OA- and SA-coated iron oxide NPs are found to have very low Young moduli with substantially higher resistance to failure than neat PDMS. For example, a formulation containing 2.5 wt% OA-coated NPs and 2.5 wt% SA-coated iron oxide NPs has a modulus of 0.15 MPa (compared with 0.24 MPa for neat PDMS), while it can withstand an elongation of about 1.5 times its initial length compared with only 0.3 times for neat PDMS. As a comparison, the modulus of the most commonly used commercial PDMS elastomer (Sylgard 184) is an order of magnitude higher than that of the composites prepared here, whereas maximum elongation is similar for the two. The formulations developed in this work could be used in applications where high deformability is required with limited magnetic field strength and/or NP loading.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据