4.7 Article

Experimental investigation and numerical simulation of the combustion of flexible polyurethane foam with larger geometries

期刊

POLYMER TESTING
卷 81, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymertesting.2019.106270

关键词

Flexible polyurethane foam; Combustion; Pyrolysis; Heat release rate; Numerical modelling

资金

  1. Natural Science Foundation of Fujian Province (China) [2019J01710]
  2. Open Fund of the Key Laboratory of Clean Energy Utilization and Development of Fujian Province [KF201701]

向作者/读者索取更多资源

Numerical modelling of the combustion of flexible polyurethane foam (FPUF) is challenging, as the structural collapse and shrinkage of the foam complicate its pyrolysis, and two fuel items are involved in the combustion. Two-layer pyrolysis models were established based on the bench-scale tests over the past decade, but the accuracy was limited when simulating the combustion of FPUF with larger geometries. To improve the accuracy of the numerical simulation, small-scale experiments were conducted to investigate the combustion of FPUF with a larger geometry. Firstly, numerical simulations using a two-layer pyrolysis model proposed in the most recent research were performed to simulate the combustion of FPUF in the small-scale experiments. It was found that the heat release rate (HRR) was over-predicted in the initial combustion stage. Subsequently, based on the analysis of the visual and measured data obtained from the small-scale experiments, a three-layer model was proposed to describe the pyrolysis of FPUF in flaming combustion. The three-layer model was validated with the comparison of the predicted and experimental data. The results indicate that the numerical simulation using the three-layer model has a better performance in replicating the combustion of FPUF under well-ventilated conditions. While, the capability of the three-layer model was limited when it was used to simulate the combustion of FPUF in under-ventilated conditions, as it is found that ventilation influences the HRR of FPUF to a significant extent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据