4.6 Article

Callus growth kinetics and accumulation of secondary metabolites of Bletilla striata Rchb. f. using a callus suspension culture

期刊

PLOS ONE
卷 15, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0220084

关键词

-

资金

  1. National Natural Science Foundation of China [31560079, 31560102]
  2. Scientific Project of Guizhou Province [QKH-ZY[2013]3002, QKH-LH [2014]7549, [2017]5733-001]
  3. Talents Promotion Project of Zunyi Medical University [JC2018-2-5 (1)]
  4. PhD Science Foundation of Zunyi Medical University [F-809]
  5. Talent Growth Project of Guizhou Education Department [KY[2017]194]

向作者/读者索取更多资源

Bletilla striata is an endangered traditional Chinese medicinal plant with multiple uses and a slow regeneration rate of its germplasm resources. To evaluate the callus growth kinetics and accumulation of secondary metabolites (SMs), a callus suspension culture was proven to be a valuable approach for acquiring high yields of medicinal compounds. An effective callus suspension culture for obtaining B. striata callus growth and its SMs was achieved with the in vitro induction of calluses from B. striata seeds. The callus growth kinetics and accumulation of SMs were analyzed using a mathematical model. The resulting callus growth kinetic model revealed that the growth curves of B. striata suspension-cultured calluses were sigmoidal, indicating changes in the growth of the suspension-cultured calluses. Improved Murashige and Skoog callus growth medium was the most favorable medium for B. striata callus formation, with the highest callus growth occurring during the stationary phase of the cultivation period. Callus growth acceleration started after 7 days and thereafter gradually decreased until day 24 of the cultivation period and reached its highest at day 36 period in both the dry weight and fresh weight analyses. The coelonin concentration peaked during the exponential growth stage and decreased afterward during the stationary stage of the callus suspension culture. The maximum content of coelonin (approximately 0.3323 mg/g callus dry weight) was observed on the 18th day of the cultivation cycle, while dactylorhin A and militarine reached the highest concentrations at day 24, and p-hydroxybenzyl alcohol at day 39. This investigation also laid a foundation for a multimathematical model to better describe the accumulation variation of SMs. The production of SMs showed great specificity during callus growth and development. This research provided a well-organized way to increase the accumulation and production of SMs during the scaled-up biosynthesis of calluses in B. striata callus suspension cultures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据