4.6 Article

Robust effect of metabolic syndrome on major metabolic pathways in the myocardium

期刊

PLOS ONE
卷 14, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0225857

关键词

-

资金

  1. NIH [R01HL128831, R01HL12707201A1, HL136347-01, P30DK097512]
  2. NIH (Los Alamos National Laboratory LDRD) [20180060DR]
  3. US Department of Energy National Nuclear Security Administration [DE-AC52-06NA25396]

向作者/读者索取更多资源

Although the high-fat-diet-induced metabolic syndrome (MetS) is a precursor of human cardiac pathology, the myocardial metabolic state in MetS is far from clear. The discrepancies in metabolite handling between human and small animal models and the difficulties inherent in obtaining human tissue complicate the identification of the myocardium-specific metabolic response in patients. Here we use the large animal model of swine that develops the hallmark criteria of human MetS. Our comparative metabolomics together with transcriptomics and computational nonnegative matrix factorization (NMF) interpretation of the data exposes significant decline in metabolites related to the fatty acid oxidation, glycolysis, and pentose phosphate pathway. Behind the reversal lies decreased expression of enzymes that operate in the pathways. We showed that diminished glycogen deposition is a metabolic signature of MetS in the pig myocardium. The depletion of glycogen arises from disbalance in expression of genes that break down and synthesize glycogen. We show robust acetoacetate accumulation and activated expression of key enzymes in ketone body formation, catabolism and transporters, suggesting a shift in fuel utilization in MetS. A contrasting enrichment in O-GlcNAcylated proteins uncovers hexosamine pathway and O-GlcNAcase (OGA) expression involvement in the myocardial response to MetS. Although the hexosamine biosynthetic pathway (HBP) activity and the availability of the UDP-GlcNAc substrate in the MetS myocardium is low, the level of O-GlcNacylated proteins is high as the O-GlcNacase is significantly diminished. Our data support the perception of transcriptionally driven myocardial alterations in expression of standard fatty acids, glucose metabolism, glycogen, and ketone body related enzymes and subsequent paucity of their metabolite products in MetS. This aberrant energy metabolism in the MetS myocardium provide insight into the pathogenesis of CVD in MetS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据