4.7 Review

Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): a review of physiological and genetic basis

期刊

PLANTA
卷 251, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00425-019-03322-z

关键词

Dry direct-seeding rice; Mesocotyl; Phenotyping; Plant hormones; QTL

资金

  1. Agricultural Science and Technology Innovation Program Cooperation and Innovation Mission [CAAS-XTCX2016001]
  2. Shenzhen Science and Technology Projects [JSGG20160608160725473]

向作者/读者索取更多资源

Dry direct-seeding is becoming a popular rice cultivation technology in many countries, which reduces water use and labor costs enormously. Meanwhile, direct-seeding rice is also facing the problems of low seedling emergence rate, poor seedling establishment, weed infestation, and high crop lodging rate. To take the full advantages of direct-seeding, both agronomic and genetic solutions are needed. Varieties with optimum mesocotyl length are desired for improving rice seedling emergence rate, particularly under deep sowing and submergence, which is adopted to reduce lodging and increase tolerance to abiotic stresses. In this review, we summarized the physiological and genetic mechanisms of mesocotyl elongation in rice. The elongation of mesocotyl is affected by light, temperature, and water, and, as a result, is responsive to sowing depth, water content, and soil salinity. Plant hormones such as abscisic acid (ABA), brassinosteroid (BR), strigolactones (SLs), cytokinin (CTK), ethylene (ETH), jasmonic acid (JA), gibberellin ( GA), and indole-3-acetic acid (IAA) play important roles in regulating mesocotyl elongation. A humus soil culture protocol developed by our team was shown to be a better high-throughput method for measuring mesocotyl length in large scale. Sixty-seven QTL controlling mesocotyl length were reported, which are distributed on all the 12 chromosomes. Twelve chromosomal regions were repeatedly found to have QTL using various mapping populations and methods. These regions should be targeted in future studies to isolate genes and develop markers for molecular breeding. Two genes with very different molecular functions have been cloned, highlighting the genetic complexity of mesocotyl elongation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据