4.8 Article

Tissue-specific study across the stem of Taxus media identifies a phloem-specific TmMYB3 involved in the transcriptional regulation of paclitaxel biosynthesis

期刊

PLANT JOURNAL
卷 103, 期 1, 页码 95-110

出版社

WILEY
DOI: 10.1111/tpj.14710

关键词

metabolome; phloem; proteome; paclitaxel biosynthesis; Taxus media

资金

  1. Zhejiang Provincial Natural Science Foundation of China [LY19C160001]
  2. Open Foundation of State Key Laboratory of Subtropical Silviculture, Zhejiang A F University [KF201708]
  3. Major Increase or Decrease Program in the Central Finance Level grant [2060302]
  4. Zhejiang Provincial Key Research & Development Project [2017C02011, 2018C02030]

向作者/读者索取更多资源

Taxus stem barks can be used for extraction of paclitaxel. However, the composition of taxoids across the whole stem and the stem tissue-specificity of paclitaxel biosynthesis-related enzymes remain largely unknown. We used cultivated Taxus media trees for analyses of the chemical composition and protein of major stem tissues by an integrated metabolomic and proteomic approach, and the role of TmMYB3 in paclitaxel biosynthesis was investigated. The metabolomic landscape analysis showed differences in stem tissue-specific accumulation of metabolites. Phytochemical analysis revealed that there is high accumulation of paclitaxel in the phloem. Ten key enzymes involved in paclitaxel biosynthesis were identified, most of which are predominantly produced in the phloem. The full-length sequence of TmMYB3 and partial promoter sequences of five paclitaxel biosynthesis-related genes were isolated. Several MYB recognition elements were found in the promoters of TBT, DBTNBT and TS. Further in vitro and in vivo investigations indicated that TmMYB3 is involved in paclitaxel biosynthesis by activating the expression of TBT and TS. Differences in the taxoid composition of different stem tissues suggest that the whole stem of T. media has potential for biotechnological applications. Phloem-specific TmMYB3 plays a role in the transcriptional regulation of paclitaxel biosynthesis, and may explain the phloem-specific accumulation of paclitaxel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据