4.6 Article

Theoretical method for calculation of effective properties of composite materials with reconfigurable microstructure: Electric and magnetic phenomena

出版社

ELSEVIER
DOI: 10.1016/j.physa.2019.122467

关键词

-

资金

  1. Bavarian Academic Center for Central, Eastern and Southeastern Europe (BAYHOST) [MB-2018-2/5]
  2. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [389008375]

向作者/读者索取更多资源

We propose a theoretical approach for calculating effective electric and magnetic properties of composites, with field dependent restructuring of the filler. The theory combines the effective medium approximation, extended to a field-dependent (variable) percolation threshold, with an approximate treatment of the nonlinearity of material properties. Theoretical results are compared with experiments on magnetorheological elastomers, which in the context of investigated phenomena are often called magnetoactive elastomers (MAEs). In MAEs with soft polymer matrices, the mutual arrangement of inclusions changes in an applied magnetic field. This reorganization of the microstructure leads to unconventionally large changes of electrical and magnetic properties. The obtained theoretical results describe observed phenomena in MAEs well. For the magnetodielectric effect, qualitative agreement between theory and experiment is demonstrated. In the case of magnetic permeability, quantitative agreement is achieved. The theoretical approach presented can be useful for the development of field-controlled smart materials and design of intelligent structures on their basis, because the field dependence of physical properties can be predicted. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据