4.7 Article

The interactions of PhSPL17 and PhJAZ1 mediate the on- and off-year moso bamboo (Phyllostachys heterocycla) resistance to the Pantana phyllostachysae larval feeding

期刊

PEST MANAGEMENT SCIENCE
卷 76, 期 4, 页码 1588-1595

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/ps.5681

关键词

insect resistance; jasmonate signaling; JAZ; family leaf age; moso bamboo (Phyllostachys heterocycla); on- and off-year

资金

  1. National Natural Science Foundation of China [31700582]
  2. People's Republic of China Scholarship Council

向作者/读者索取更多资源

BACKGROUND The immunity of moso bamboo (Phyllostachys heterocycle) to insect defoliator outbreaks differs between on-years to off-years; however, the underlying genetic mechanisms remain unknown. In this study, the genetic relationships of functional genes conferring pest resistance were investigated. RESULTS PhJAZ1 (Phyllostachys heterocycla JASMONATE ZIM-domain protein 1) exhibited the highest enrichment and was expressed at higher levels in the leaves of on-year bamboo plants compared with off-year, whereas the expression of PhSPL17 (Phyllostachys heterocycla SQUAMOSA Promoter binding protein-Like 17) showed the reverse pattern. The expression pattern of PhJAZ1 differed in on- and off-year bamboo (i.e., decreasing in the off-year with no obvious change in the on-year) after feeding by Pantana phyllostachysae (lepidopteran caterpillar of moso bamboo). Due to the lack of a genetic transformation system, the model plant Arabidopsis was used for the investigation of the genetic relationships between PhJAZ1 and PhSPL17. Overexpression of the PhJAZ1 protein in Arabidopsis showed a negative impact on the survival ratio and weight of third-instar Helicoverpa armigera (Arabidopsis leaf-feeding lepidopteran caterpillar). Transcriptional suppression of PhJAZ1 by PhSPL17 was observed, which was able to reveal the reverse expression pattern of PhJAZ1 and PhSPL17. CONCLUSION Together, these results suggest that on- and off-years (leaf age) regulate the expression of PhSPL17, which negatively regulates the expression of PhJAZ1 to generate differential response to Jasmonate. This study is the first to detail the genetic connection between leaf age and Jasmonate response in moso bamboo and provides a foundation for further pest control via the genetic breeding of moso bamboo. (c) 2019 Society of Chemical Industry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据