4.5 Article

Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D Riemannian manifold with Bishop equations

期刊

OPTIK
卷 200, 期 -, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.ijleo.2019.163334

关键词

Polarized light wave; Geometric phase; Electromagnetic curves; Electromagnetic force; Optical angular momentum; Magnetic force

类别

向作者/读者索取更多资源

We review the geometric evolution of a linearly polarized light wave coupling into an optical fiber and the rotation of the polarization plane in a three-dimensional (3D) Riemannian manifold. The optical fiber is assumed to be a one-dimensional object imbedded in the 3D Riemannian manifold along the paper. Thus, in the 3D Riemannian manifold, we demonstrate that the evolution of a linearly polarized light wave is associated with the Berry phase or more commonly known as the geometric phase. The ordinary condition for parallel transportation is defined by the Fermi-Walker parallelism law. We define other Fermi-Walker parallel transportation laws and connect them with the famous Rytov parallel transportation law for an electric field epsilon, which is considered as the direction of the state of the linearly polarized light wave in the optical fiber in the 3D Riemannian manifold. Later, we define a special class of magnetic curves called by Bishop electromagnetic curves (B epsilon M -curves), which are generated by the electric field epsilon along the linearly polarized monochromatic light wave propagating in the optical fiber. In this way, not only we define a special class of linearly polarized point-particles corresponding to B epsilon M -curves of the electromagnetic field along with the optical fiber in the 3D Riemannian manifold, but we also calculate, both numerically and analytically, the electromagnetic force, Poynting vector, energy-exchanges rate, optical angular and linear momentum, and optical magnetic-torque experienced by the linearly polarizable point-particles along with the optical fiber in the 3D Riemannian manifold.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据