4.6 Article

Real-time terahertz wave channeling via multifunctional metagratings: a sparse array of all-graphene scatterers

期刊

OPTICS LETTERS
卷 45, 期 4, 页码 795-798

出版社

OPTICAL SOC AMER
DOI: 10.1364/OL.383001

关键词

-

类别

向作者/读者索取更多资源

Acquiring full control over a large number of diffraction orders can be strongly attractive in the case of realizing multifunctional devices such as multichannel reflectors. Recently, the concept of metagrating has been introduced, which enables obtaining the desired diffraction pattern through a sparse periodic array of engineered scatterers. In this Letter, for the first time, to the best of our knowledge, a tunable all-graphene multichannel meta-reflector is proposed for operating at terahertz (THz) frequencies. In the supercell level, the designed metagrating is composed of three graphene ribbons of different controllable chemical potentials which can be regarded as a five-channel THz meta-reflector. By choosing proper distribution of DC voltages feeding the ribbons, our design can realize different intriguing functionalities such as anomalous reflection, retroreflection, and three-channel power splitting within a single shared aperture and with high efficiency. This Letter paves the way toward designing highly efficient and tunable THz multichannel meta-reflectors with many potential applications in photonics and optoelectronics. (C) 2020 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据