4.6 Article

Theory of birefringence correction for polarization-controlled CARS

期刊

OPTICS EXPRESS
卷 28, 期 7, 页码 9158-9173

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.389558

关键词

-

类别

资金

  1. Intramural NIST DOC [9999-NIST] Funding Source: Medline

向作者/读者索取更多资源

Polarization-controlled coherent Raman spectroscopy is used as a high-throughput method to characterize the anisotropic nature of a molecular system, such as the molecular orientation distribution. However, optical birefringence originating from the molecular anisotropy can cause the observed Raman spectrum to be significantly distorted, making it extremely challenging to obtain quantitative information from polarization Raman measurements. Here, the birefringence effect on the signal intensity and the spectral shape of a polarization-controlled coherent anti-Stokes Raman scattering (CARS) is theoretically described using a uniaxially symmetrical model system. Due to the complexity, the effect of phase delay in the incident lights is not considered but only that of the generated CARS signal is considered. A new analytical method is presented to eliminate the birefringence contribution from polarization-controlled CARS data by analyzing polarization intensity profiles and retrieving the resonant Raman susceptibility spectra. This method is tested with two sets of polarization-controlled CARS data simulated with various combinations of symmetries of multiple underlying Raman modes. The analysis result clearly demonstrates that the effect of birefringence can be corrected for polarization-controlled CARS data and the symmetry tensor elements of all underlying Raman modes can be quantitatively characterized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据