4.6 Article

Impact of high UV fluences on the mechanical and sensing properties of polymer optical fibers for high strain measurements

期刊

OPTICS EXPRESS
卷 28, 期 2, 页码 1158-1167

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.378634

关键词

-

类别

资金

  1. Hong Kong Polytechnic University [1-ZVGB]
  2. [152207/18E]

向作者/读者索取更多资源

PMMA-based fibers are widely studied for strain measurements and show repeatable results for Fiber Bragg Gratings (FBGs) inscribed using 325 nm laser and 248 nm laser. However, there is no available material mechanical behavior characterization of the UV source impact on the fiber properties. In this manuscript, fibers are irradiated with high fluence of 325 nm and 248 nm lasers and the fibers properties are investigated using dynamic mechanical analysis and tensile strain for potential use of these fibers past the yield point. It is demonstrated that the UV sources shifted the ultimate tensile strength and changed the strain hardening behavior. Tensile strain measurements show excellent repeatability for gratings inscribed with these two sources with similar sensitivity of 1.305 nm/m epsilon for FBG inscribe with 325 nm laser, and 1.345 nm/m epsilon for grating written with 248 nm laser in the range 0 to 1.5% elongation. Furthermore, tests far beyond the yield point (up to 2.8% elongation) show that grating inscribed with lower UV wavelength exhibit hysteresis. Finally, we demonstrate that 248 nm laser fluence shall be chosen carefully whereas even high 325 nm laser fluence do not critically impact the sensor properties. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据