4.3 Article

Ultracompact tunable bifunctional XOR and XNOR photonic crystal logic gates

期刊

OPTICAL ENGINEERING
卷 59, 期 2, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.OE.59.2.027106

关键词

photonic crystal; photonic logic gates; nematic liquid crystal; plane wave expansion method

类别

向作者/读者索取更多资源

Ultracompact simultaneous XOR and XNOR logic gates are proposed and analyzed. The suggested design is based on two-dimensional Si photonic crystal (PhC) with a central hole infiltrated by nematic liquid crystal (NLC) of type E7. The plane wave expansion method is used to obtain the photonic bandgap for both transverse electric mode and transverse magnetic mode. Further, the transmission through the proposed logic gates is calculated by the full vectorial finite element method. The numerical results show that the reported XOR and XNOR logic gates can be operated around wavelength of 1500 nm. In addition, the operation of the designed logic gates can be switched on/off by controlling the NLC biasing state. Such PhC logic gates have a compact size of 47 mu m(2) and can achieve a large contrast ratio of 26 dB. Therefore, the suggested design has advantages in terms of tunability, low power consumption, compact size, simplicity, and compatibility with nowadays fabrication technology, which will be suitable for photonic integrated circuits. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据