4.3 Article

The Effect and Mechanism of TRPC1, 3, and 6 on the Proliferation, Migration, and Lumen Formation of Retinal Vascular Endothelial Cells Induced by High Glucose

期刊

OPHTHALMIC RESEARCH
卷 63, 期 3, 页码 284-294

出版社

KARGER
DOI: 10.1159/000503724

关键词

Human retinal endothelial cells; Transient receptor potential canonical channels; Vascular endothelial growth factor; High glucose; Neovascularization

资金

  1. Guangxi Health Department Fund [S2018093]
  2. Guangxi Natural Science Foundation [2014GXNSFAA118273]
  3. University Scientific Research Projects in Education Department of Guangxi Zhuang Autonomous Region [YB2014072]

向作者/读者索取更多资源

Objective: Transient receptor potential canonical (TRPC) channels are involved in neovascularization repairing after vascular injury in many tissues. However, whether TRPCs play a regulatory role in the development of diabetic retinopathy (DR) has rarely been reported. In the present study, we selected TRPC1, 3, and 6 to determine their roles and mechanism in human retina vascular endothelial cells (HREC) under high glucose (HG) conditions. Methods: HRECs were cultured in vitro under HG, hyper osmosis, and normal conditions. The expression of TRPC1, 3, and 6 in the cells at 24 and 48 h were detected by RT-polymerase chain reaction (PCR), Western blot and cell immunohistochemistry (IHC); In various concentrations, SKF96365 acted on HG cultured HRECs, the expression of vascular endothelial growth factor (VEGF) were detected by the same methods above; and the CCK-8, Transwell, cell scratch assay, and Matrigel assay were used to assess cell proliferation, migration, and lumen formation. Results: The RT-PCR, Western blot, and IHC results showed that TRPC1 expression was increased, and TRPC6 mRNA expression was increased under high-glucose conditions. SKF96365 acted on HG cultured HRECs that VEGF expression was significantly decreased. The CCK-8 assay, Transwell assay, cell scratch assay, and Matrigel assay showed that cell proliferation, migration, and lumen formation were downregulated by SKF96365. Conclusion: HG can induce increased expression of TRPC1 and 6 in HRECs. Inhibition of the TRPC pathway not only can decrease VEGF expression but also can prevent proliferation, migration, and lumen formation of HRECs induced by HG. Inhibition of TRPC channels is expected to become a drug target for DR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据