4.8 Article

Free energy landscape of salt-actuated reconfigurable DNA nanodevices

期刊

NUCLEIC ACIDS RESEARCH
卷 48, 期 2, 页码 548-560

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkz1137

关键词

-

资金

  1. National Science Foundation (NSF) [CMMI-1921955]
  2. NSF XSEDE program [ACI-1053575]

向作者/读者索取更多资源

Achieving rapid, noninvasive actuation of DNA structures is critical to expanding the functionality of DNA nanotechnology. A promising actuation approach involves introducing multiple, short pairs of single-stranded DNA overhangs to components of the structure and triggering hybridization or dissociation of the overhangs via changes in solution ionic conditions to drive structural transitions. Here, we reveal the underlying basis of this new approach by computing via molecular simulations the free energy landscape of DNA origami hinges actuated between open and closed states. Our results reveal how the overhangs collectively introduce a sharp free-energy minimum at the closed state and a broad energy barrier between open and closed states and how changes in ionic conditions modulate these features of the landscape to drive actuation towards the open or closed state. We demonstrate the critical role played by hinge confinement in stabilizing the hybridized state of the overhangs and magnifying the energy barrier to dissociation. By analyzing how the distribution of overhangs and their length and sequence modulate the energy landscape, we obtain design rules for tuning the actuation behavior. The molecular insights obtained here should be applicable to a broad range of systems involving DNA hybridization within confined systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据