4.7 Article

Mem-models as building blocks for simulation and identification of hysteretic systems

期刊

NONLINEAR DYNAMICS
卷 100, 期 2, 页码 973-998

出版社

SPRINGER
DOI: 10.1007/s11071-020-05542-5

关键词

Mem-springs; Mem-dashpots; Strain ratcheting; Cyclic hardening; Cyclic softening; Steel wire rope; Shape memory alloy

向作者/读者索取更多资源

In this study, mem-springs and mem-dashpots from a newly introduced family of mem-models are used as fundamental building blocks in hysteresis modeling. The usefulness of such assemblies of mem-models is investigated for both simulation and system identification. First, numerical simulations demonstrate the general capability of these models to describe strain ratcheting behaviors. Next, system identification is addressed by extending the concepts of mem-springs to include linear and nonlinear springs and those of mem-dashpots to include linear and nonlinear dashpots. A reconfigurable device made of steel and/or shape memory alloy wires and wire ropes provides a fitting test for the proposed mem-model-based family. A system identification procedure corroborated by physical insights is proposed and the results are validated using physics-based analysis. Multilayer feedforward neural networks are used for static nonlinear function approximation. The model class and system identification procedure proposed here are shown to extract similarities and dissimilarities among different configurations of the device by quantifying the spring and damping effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据