4.6 Article

A VIT-like transporter facilitates iron transport into nodule symbiosomes for nitrogen fixation in soybean

期刊

NEW PHYTOLOGIST
卷 226, 期 5, 页码 1413-1428

出版社

WILEY
DOI: 10.1111/nph.16506

关键词

iron; nodule; soybean; symbiosome; transporter; VTL

资金

  1. National Key Research and Development Program of China [2016YFD0100401]
  2. National Natural Science Foundation of China [31872171]

向作者/读者索取更多资源

Effective legume-rhizobia symbiosis depends on efficient nutrient exchange. Rhizobia need to synthesize iron-containing proteins for symbiotic nitrogen fixation (SNF) in nodules, which depends on host plant-mediated iron uptake into the symbiosome. We functionally investigated a pair of vacuolar iron transporter like (VTL) genes, GmVTL1a/b, in soybean (Glycine max) and evaluated their contributions to SNF, including investigations of gene expression patterns, subcellular localization, and mutant phenotypes. Though both GmVTL1a/b genes were specifically expressed in the fixation zone of the nodule, GmVTL1a was the lone member to be localized at the tonoplast of tobacco protoplasts, and shown to facilitate ferrous iron transport in yeast. GmVTL1a targets the symbiosome in infected cells, as verified by in situ immunostaining. Two vtl1 knockout mutants had lower iron concentrations in nodule cell sap and peribacteroid units than in wild-type plants, suggesting that GmVTL1 knockout inhibited iron import into symbiosomes. Furthermore, GmVTL1 knockout minimally affected soybean growth under nonsymbiotic conditions, but dramatically impaired nodule development and SNF activity under nitrogen-limited and rhizobia-inoculation conditions, which eventually led to growth retardation. Taken together, these results demonstrate that GmVTL1a is indispensable for SNF in nodules as a transporter of ferrous iron from the infected root cell cytosol to the symbiosome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据