4.6 Article

Imaging individual solute atoms at crystalline imperfections in metals

期刊

NEW JOURNAL OF PHYSICS
卷 21, 期 12, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/ab5cc4

关键词

analytical-field ion microscopy; time-of-flight mass-spectroscopy; atomic resolution; dislocation segregation; density functional theory

资金

  1. International Max-Planck Research School SurMat
  2. MPG through the Laplace project
  3. German Research Foundation (DFG) [SFB/TR 103]
  4. ERC-CoG [SHINE-771602]

向作者/读者索取更多资源

Directly imaging all atoms constituting a material and, maybe more importantly, crystalline defects that dictate materials' properties, remains a formidable challenge. Here, we propose a new approach to chemistry-sensitive field-ion microscopy (FIM) combining FIM with time-of-flight mass-spectrometry (tof-ms). Elemental identification and correlation to FIM images enabled by data mining of combined tof-ms delivers a truly analytical-FIM (A-FIM). Contrast variations due to different chemistries is also interpreted from density-functional theory (DFT). A-FIM has true atomic resolution and we demonstrate how the technique can reveal the presence of individual solute atoms at specific positions in the microstructure. The performance of this new technique is showcased in revealing individual Re atoms at crystalline defects formed in Ni-Re binary alloy during creep deformation. The atomistic details offered by A-FIM allowed us to directly compare our results with simulations, and to tackle a long-standing question of how Re extends lifetime of Ni-based superalloys in service at high-temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据