4.7 Article

ELM embedded discriminative dictionary learning for image classification

期刊

NEURAL NETWORKS
卷 123, 期 -, 页码 331-342

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2019.11.015

关键词

Discriminative dictionary learning; Extreme learning machine; Sparse representation; Maximum margin criterion

向作者/读者索取更多资源

Dictionary learning is a widely adopted approach for image classification. Existing methods focus either on finding a dictionary that produces discriminative sparse representation, or on enforcing priors that best describe the dataset distribution. In many cases, the dataset size is often small with large intra-class variability and nondiscriminative feature space. In this work we propose a simple and effective framework called ELM-DDL to address these issues. Specifically, we represent input features with Extreme Learning Machine (ELM) with orthogonal output projection, which enables diverse representation on nonlinear hidden space and task specific feature learning on output space. The embeddings are further regularized via a maximum margin criterion (MMC) to maximize the interclass variance and minimize intra-class variance. For dictionary learning, we design a novel weighted class specific l(1,2) norm to regularize the sparse coding vectors, which promotes uniformity of the sparse patterns of samples belonging to the same class and suppresses support overlaps of different classes. We show that such regularization is robust, discriminative and easy to optimize. The proposed method is combined with a sparse representation classifier (SRC) to evaluate on benchmark datasets. Results show that our approach achieves state-of-the-art performance compared to other dictionary learning methods. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据