4.6 Article

Concrete compressive strength using artificial neural networks

期刊

NEURAL COMPUTING & APPLICATIONS
卷 32, 期 15, 页码 11807-11826

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00521-019-04663-2

关键词

Artificial neural networks; Compressive strength; Concrete; Non-destructive testing methods; Soft computing

向作者/读者索取更多资源

The non-destructive testing of concrete structures with methods such as ultrasonic pulse velocity and Schmidt rebound hammer test is of utmost technical importance. Non-destructive testing methods do not require sampling, and they are simple, fast to perform, and efficient. However, these methods result in large dispersion of the values they estimate, with significant deviation from the actual (experimental) values of compressive strength. In this paper, the application of artificial neural networks (ANNs) for predicting the compressive strength of concrete in existing structures has been investigated. ANNs have been systematically used for predicting the compressive strength of concrete, utilizing both the ultrasonic pulse velocity and the Schmidt rebound hammer experimental results, which are available in the literature. The comparison of the ANN-derived results with the experimental findings, which are in very good agreement, demonstrates the ability of ANNs to estimate the compressive strength of concrete in a reliable and robust manner. Thus, the (quantitative) values of weights for the proposed neural network model are provided, so that the proposed model can be readily implemented in a spreadsheet and accessible to everyone interested in the procedure of simulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据