4.7 Review

Cellular adaptation to hypoxia through hypoxia inducible factors and beyond

期刊

NATURE REVIEWS MOLECULAR CELL BIOLOGY
卷 21, 期 5, 页码 268-283

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41580-020-0227-y

关键词

-

向作者/读者索取更多资源

Molecular oxygen (O-2) sustains intracellular bioenergetics and is consumed by numerous biochemical reactions, making it essential for most species on Earth. Accordingly, decreased oxygen concentration (hypoxia) is a major stressor that generally subverts life of aerobic species and is a prominent feature of pathological states encountered in bacterial infection, inflammation, wounds, cardiovascular defects and cancer. Therefore, key adaptive mechanisms to cope with hypoxia have evolved in mammals. Systemically, these adaptations include increased ventilation, cardiac output, blood vessel growth and circulating red blood cell numbers. On a cellular level, ATP-consuming reactions are suppressed, and metabolism is altered until oxygen homeostasis is restored. A critical question is how mammalian cells sense oxygen levels to coordinate diverse biological outputs during hypoxia. The best-studied mechanism of response to hypoxia involves hypoxia inducible factors (HIFs), which are stabilized by low oxygen availability and control the expression of a multitude of genes, including those involved in cell survival, angiogenesis, glycolysis and invasion/metastasis. Importantly, changes in oxygen can also be sensed via other stress pathways as well as changes in metabolite levels and the generation of reactive oxygen species by mitochondria. Collectively, this leads to cellular adaptations of protein synthesis, energy metabolism, mitochondrial respiration, lipid and carbon metabolism as well as nutrient acquisition. These mechanisms are integral inputs into fine-tuning the responses to hypoxic stress. The transcriptional response to hypoxia and the role of hypoxia inducible factors have been extensively studied. Yet, hypoxic cells also adapt to hypoxia by modulating protein synthesis, metabolism and nutrient uptake. Understanding these processes could shed light on pathologies associated with hypoxia, including cardiovascular diseases and cancer, and disease mechanisms, such as inflammation and wound repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据