4.6 Review

Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine

期刊

NATURE REVIEWS CARDIOLOGY
卷 17, 期 6, 页码 341-359

出版社

NATURE RESEARCH
DOI: 10.1038/s41569-019-0331-x

关键词

-

资金

  1. NIH [R01HL128362, U54DK107979, R01HL141570, R01HL146868, R01HL128368]
  2. Fondation Leducq Transatlantic Network of Excellence
  3. Robert B. McMillen Foundation
  4. Japan Society for the Promotion of Science

向作者/读者索取更多资源

In this Review, Murry and colleagues describe the hallmarks of cardiomyocyte maturation and the current approaches to mature stem cell-derived cardiomyocytes, highlighting challenges and future directions to generate cardiomyocytes with an optimal maturation state for use in research and regenerative medicine. Our knowledge of pluripotent stem cell (PSC) biology has advanced to the point where we now can generate most cells of the human body in the laboratory. PSC-derived cardiomyocytes can be generated routinely with high yield and purity for disease research and drug development, and these cells are now gradually entering the clinical research phase for the testing of heart regeneration therapies. However, a major hurdle for their applications is the immature state of these cardiomyocytes. In this Review, we describe the structural and functional properties of cardiomyocytes and present the current approaches to mature PSC-derived cardiomyocytes. To date, the greatest success in maturation of PSC-derived cardiomyocytes has been with transplantation into the heart in animal models and the engineering of 3D heart tissues with electromechanical conditioning. In conventional 2D cell culture, biophysical stimuli such as mechanical loading, electrical stimulation and nanotopology cues all induce substantial maturation, particularly of the contractile cytoskeleton. Metabolism has emerged as a potent means to control maturation with unexpected effects on electrical and mechanical function. Different interventions induce distinct facets of maturation, suggesting that activating multiple signalling networks might lead to increased maturation. Despite considerable progress, we are still far from being able to generate PSC-derived cardiomyocytes with adult-like phenotypes in vitro. Future progress will come from identifying the developmental drivers of maturation and leveraging them to create more mature cardiomyocytes for research and regenerative medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据