4.8 Article

Electromagnetically induced transparency at a chiral exceptional point

期刊

NATURE PHYSICS
卷 16, 期 3, 页码 334-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-019-0746-7

关键词

-

资金

  1. NSF [DMR-1743235, EFMA1641109]
  2. ARO [W911NF1710189]
  3. DARPA [HR00111820042]
  4. Packard Foundation [2013-39273]

向作者/读者索取更多资源

Electromagnetically induced transparency, as a quantum interference effect to eliminate optical absorption in an opaque medium, has found extensive applications in slow-light generation, optical storage, frequency conversion, optical quantum memory and enhanced nonlinear interactions at the few-photon level in all kinds of systems. Recently, there has been great interest in exceptional points, a type of spectral singularity that could be reached by tuning various parameters in open systems, to render unusual features to the physical systems, such as optical states with chirality. Here we theoretically and experimentally study transparency and absorption modulated by chiral optical states at exceptional points in an indirectly coupled resonator system. By tuning one resonator to an exceptional point, transparency or absorption occurs depending on the chirality of the eigenstate. Our results demonstrate a new strategy to manipulate the light flow and the spectra of a photonic resonator system by exploiting a discrete optical state associated with a specific chirality at an exceptional point as a unique control bit. Such an approach is compatible with the state control utilized in quantum gate operation and may open up new avenues for controlling slow light using optical states for optical quantum memory and computing. The optical analogue of electromagnetically induced transparency and absorption can be modulated by chiral optical states at an exceptional point, which is shown in a system of indirectly coupled microresonators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据