4.8 Article

Synthetic gauge fields for phonon transport in a nano-optomechanical system

期刊

NATURE NANOTECHNOLOGY
卷 15, 期 3, 页码 198-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41565-019-0630-8

关键词

-

资金

  1. Office of Naval Research [N00014-16-1-2466]
  2. European Research Council (ERC) [759644-TOPP]
  3. European Union's Horizon 2020 research and innovation programme [732894]

向作者/读者索取更多资源

Gauge fields in condensed matter physics give rise to nonreciprocal and topological transport phenomena and exotic electronic states(1). Nanomechanical systems are applied as sensors and in signal processing, and feature strong nonlinearities. Gauge potentials acting on such systems could induce quantum Hall physics for phonons at the nanoscale. Here, we demonstrate a magnetic gauge field for nanomechanical vibrations in a scalable, on-chip optomechanical system. We induce the gauge field through multi-mode optomechanical interactions, which have been proposed as a resource for the necessary breaking of time-reversal symmetry(2-4). In a dynamically modulated nanophotonic system, we observe how radiation pressure forces mediate phonon transport between resonators of different frequencies. The resulting controllable interaction, which is characterized by a high rate and nonreciprocal phase, mimics the Aharonov-Bohm effect(5). We show that the introduced scheme does not require high-quality cavities, such that it allows exploring topological acoustic phases in many-mode systems resilient to realistic disorder. Gauge fields in condensed matter give rise to nonreciprocal transport and topological non-trivial states. In an on-chip experiment, multi-mode optomechanical interactions generate a magnetic gauge field for nanomechanical motion and yield phonon transport with a nonreciprocal phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据